
Nano Banana
Kurzfassung
▾
Quellen
▾
IBM-CEO Arvind Krishna kritisiert den aktuellen Hype um Artificial General Intelligence (AGI) als wissenschaftlich fundierten Irrweg, da heutige Modelle auf Wahrscheinlichkeiten statt Logik basieren. Die gigantischen Kosten von bis zu fünf Billionen Dollar für Infrastruktur und der explodierende Energiebedarf machen den Ersatz menschlicher Arbeit durch generelle KI oft unwirtschaftlich. Statt auf eine menschenähnliche Superintelligenz zu warten, fokussiert sich IBM auf spezialisierte Enterprise-KI und setzt weiterhin auf menschliche Mitarbeiter zur Problemlösung.
The Verge – Why IBM CEO Arvind Krishna is still hiring humans in the AI era
Tech in Asia – IBM on AGI: bad math, wrong science
MIT Technology Review – The State of AI: Welcome to the economic singularity
TechCrunch – Data center energy demand forecasted to soar nearly 300 through 2035
Medial – Why IBM's CEO doesn't think current AI tech can get to AGI
Während die Tech-Welt Milliarden in den Traum einer menschenähnlichen Superintelligenz pumpt, tritt einer kräftig auf die Bremse. IBM-Chef Arvind Krishna erklärt, warum der aktuelle Weg zur Artificial General Intelligence (AGI) technisch und ökonomisch zum Scheitern verurteilt ist – und warum er trotzdem weiter in KI investiert. Die Sackgasse der Wahrscheinlichkeiten Im Podcast „Decoder“ mit Nilay Patel fand Krishna deutliche Worte für den aktuellen KI-Goldrausch. Sein Hauptargument: Wir versuchen gerade, mit Statistik ein Verständnis der Welt zu erzwingen. Aktuelle Large Language Models (LLMs) basieren auf Wahrscheinlichkeiten. Sie sagen das nächste Wort voraus, verstehen aber keine Kausalitäten und besitzen kein logisches Denkvermögen. Krishna bezeichnet die Vorstellung, dass man diese Modelle einfach nur immer größer machen muss, um eine AGI zu erhalten, als „falsche Wissenschaft“. Mehr Daten und mehr Rechenleistung führen zwar zu besseren Texten, aber nicht zu einem Bewusstsein oder echter Problemlösungskompetenz. Die Architektur der aktuellen Systeme stößt hier an eine harte Grenze, die sich nicht einfach mit Brute-Force-Computing durchbrechen lässt. Anzeige Eine Rechnung, die nicht aufgeht Neben der technologischen Kritik liefert der IBM-CEO eine knallharte wirtschaftliche Analyse. Die Branche steuert auf Investitionskosten von vier bis fünf Billionen Dollar zu, um die nötige Infrastruktur aufzubauen. Damit sich das rentiert, müsste KI menschliche Arbeit in einem gigantischen Ausmaß ersetzen. Doch genau hier liegt laut Krishna der „Rechenfehler“. In vielen Bereichen ist der Mensch schlichtweg effizienter und günstiger. Der Energiebedarf von Rechenzentren soll bis 2035 um fast 300 Prozent steigen. Einen Menschen durch ein energiehungriges KI-Modell zu ersetzen, das für jede Antwort ein halbes Kraftwerk benötigt, ist oft ökonomischer Unsinn. Die „Unit Economics“ – also die Kosten pro erledigter Aufgabe – sprechen in vielen Fällen gegen die KI und für den menschlichen Mitarbeiter. Werkzeuge statt Wundermaschinen IBM zieht daraus Konsequenzen für die eigene Strategie. Statt dem Phantom einer allwissenden AGI hinterherzujagen, konzentriert sich der Konzern auf pragmatische „Enterprise AI“. Es geht um spezifische Modelle für spezifische Probleme im Unternehmensumfeld, nicht um eine Maschine, die Gedichte schreibt und gleichzeitig Code kompiliert. Das bedeutet auch: Der Mensch bleibt unverzichtbar. Krishna betont, dass IBM weiterhin Menschen einstellt. KI sieht er als Produktivitäts-Booster, der Mitarbeiter unterstützt, statt sie komplett zu verdrängen. Während andere Tech-Giganten auf die Singularität wetten, setzt IBM auf hybride Clouds und spezialisierte KI-Agenten, die heute schon funktionieren – ganz ohne Science-Fiction-Versprechen.
Weiterlesen...